Benutzer-Werkzeuge

Webseiten-Werkzeuge


grundlagen:bauphysikalische_grundlagen:heizlast

Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen angezeigt.

Link zu dieser Vergleichsansicht

Beide Seiten der vorigen RevisionVorhergehende Überarbeitung
Nächste Überarbeitung
Vorhergehende Überarbeitung
grundlagen:bauphysikalische_grundlagen:heizlast [2021/09/06 14:52] – [Überprüfung des Heizlast-Verfahrens: Modell/Praxis] yaling.hsiao@passiv.degrundlagen:bauphysikalische_grundlagen:heizlast [2024/05/05 22:21] (aktuell) – [Heizlast in Passivhäusern] wfeist
Zeile 2: Zeile 2:
  
  
-Mit der extrem hohen Energieeffizienz, welche beim Passivhaus erreicht wird, wird der Heizwärmebedarf mit typisch um 10 bis 15 kWh/(m<sup>2</sup>a) eigentlich völlig unbedeutend in Bezug auf die davon ausgehende Ressourcen- und Umweltbelastung. In einem funktionierenden Passivhaus ist der Verbrauch für Heizung automatisch vernachlässigbar gering – er beträgt nur rund ein Zehntel des sonst üblichen Verbrauches.+Mit der hohen Energieeffizienz, welche beim Passivhaus erreicht wird, wird der Heizwärmebedarf mit typisch um 10 bis 15 kWh/(m<sup>2</sup>a) eigentlich völlig unbedeutend in Bezug auf die davon ausgehende Ressourcen- und Umweltbelastung. In einem funktionierenden Passivhaus ist der Verbrauch für Heizung automatisch vernachlässigbar gering – er beträgt nur rund ein Zehntel des sonst üblichen Verbrauches.
 \\ \\
  
-Das wurde auch wiederholt in Feldmessungen verifiziert: Nicht nur in der Berechnung, sondern in der praktischen Baunutzung wird diese 90%ige Einsparung tatsächlich erreicht. Dies ist bei Einhaltung der baulichen und technischen Qualitäten des Passivhaus-Standards statistisch gesichert der Fall [AkkP-28]. Entscheidend ist dabei ausschließlich, dass ein funktionierendes Passivhaus erreicht wird. Unter diesen Umständen ist es nicht mehr wichtig, wie hoch die Jahresbedarfswerte im Einzelnen sind, weil der Passivhaus-Standard schon von sich aus einen extrem niedrigen Verbrauch garantiert, der eine dauerhaft ökonomisch und ökologisch vertretbare Versorgung mit der Dienstleistung „behagliche Räume“ sicherstellt. Für die Frage der Funktion der Passivhäuser ist somit wiederum die Heizlast die entscheidende Größe: Über die Zuluft des im Passivhaus eingesetzten Lüftungssystems kann eine gewisse Heizleistung mit sehr geringem Aufwand verteilt werden; dadurch lässt sich das Lüftungssystem in einer doppelten Funktion nutzen und somit die Höhe der erforderlichen Investitionen in die Heizwärmeverteilung begrenzen. Diese Kosteneinsparung finanziert die Maßnahmen zur effizienten Energienutzung mit, u.a. die höheren Investitionskosten einer Wohnungslüftungsanlage. Die ohne bedeutende zusätzliche Kosten durch das Zuluftsystem verteilbare Heizleistung ist aber begrenzt; eine Abschätzung ergibt für normal belegte Wohngebäude eine verfügbare Leistung von ca. 10 W/m<sup>2</sup> (klimaunabhängig, vgl. Kasten).+Das wurde auch wiederholt in Feldmessungen verifiziert: Nicht nur in der Berechnung, sondern in der praktischen Baunutzung wird diese 90%ige Einsparung tatsächlich erreicht. Dies ist bei Einhaltung der baulichen und technischen Qualitäten des Passivhaus-Standards statistisch gesichert der Fall [AkkP-28]((Link in Passipedia zu [[/betrieb/nutzung_erfahrungen/messergebnisse/messergebnisse_zum_energieverbrauch|gemessenen Ergebnissen zum Energieverbrauch in Passivhaus-Entwicklungen.]])). Entscheidend ist dabei ausschließlich, dass ein funktionierendes Passivhaus erreicht wird. Unter diesen Umständen ist es nicht mehr wichtig, wie hoch die Jahresbedarfswerte im Einzelnen sind, weil der Passivhaus-Standard schon von sich aus einen extrem niedrigen Verbrauch garantiert, der eine dauerhaft ökonomisch und ökologisch vertretbare Versorgung mit der Dienstleistung „behagliche Räume“ sicherstellt. Für die Frage der Funktion der Passivhäuser ist somit wiederum die Heizlast die entscheidende Größe: Über die Zuluft des im Passivhaus eingesetzten Lüftungssystems kann eine gewisse Heizleistung mit sehr geringem Aufwand verteilt werden; dadurch lässt sich das Lüftungssystem in einer doppelten Funktion nutzen und somit die Höhe der erforderlichen Investitionen in die Heizwärmeverteilung begrenzen. Diese Kosteneinsparung finanziert die Maßnahmen zur effizienten Energienutzung mit, u.a. die höheren Investitionskosten einer Wohnungslüftungsanlage. Die ohne bedeutende zusätzliche Kosten durch das Zuluftsystem verteilbare Heizleistung ist aber begrenzt; eine Abschätzung ergibt für normal belegte Wohngebäude eine verfügbare Leistung von ca. 10 W/m<sup>2</sup> (klimaunabhängig, vgl. Kasten). Auch andere sehr kostengünstige Heizsysteme sind dann möglich: Z.B. lässt sich ein ganze Passivhauswohnung bequem mit einem Klimasplitgerät beheizen.
 \\ \\
  
 <WRAP center round box 60%> <WRAP center round box 60%>
 **Klimaunabhängige Passivhaus-Bedingung** **Klimaunabhängige Passivhaus-Bedingung**
-Nach DIN 1946 ist 30 m<sup>3</sup>/h der Mindest-Frischluft-Volumenstrom für eine Person (Hygiene-Bedingung). Luft hat eine Wärmekapazität bei Normaldruck und etwa 21 °C von 0.33 Wh/(m<sup>3</sup>K). Erwärmt werden kann die Frischluft um maximal 30 K, weil sonst die Gefahr von Staubverschwelung besteht. +Nach DIN 1946 ist 30 m<sup>3</sup>/h der Mindest-Frischluft-Volumenstrom für eine Person (Hygiene-Bedingung). Luft hat eine Wärmekapazität bei Normaldruck und etwa 21 °C von 0,33 Wh/(m<sup>3</sup>K). Erwärmt werden kann die Frischluft um maximal 30 K, weil sonst die Gefahr von Staubverschwelung besteht. 
  
 Es folgt für die Leistung: Es folgt für die Leistung:
-Ppers = 30 m<sup>3</sup>/h/Pers * 0.33 Wh/(m<sup>3</sup>K) * 30 K = 300 W/Pers+P<sub>pers</sub> = 30 m<sup>3</sup>/h/Pers * 0,33 Wh/(m<sup>3</sup>K) * 30 K = 300 W/Pers
  
 Also: 300 Watt pro Person kann eine Frischluftheizung bereitstellen. Wenn z.B. 30 m<sup>2</sup> Wohnfläche je Person angenommen werden, ergeben sich 10 W/m<sup>2</sup> Wohnfläche, und das unabhängig vom Klima. Hierbei handelt es sich um eine Leistungseinheit, d.h. die Werte beziehen sich auf den Tag mit der jeweils höchsten Heizleistung (Heizlastfall). Je nach Klimazone muss ein Passivhaus also unterschiedlich gut gedämmt werden: In Stockholm mehr, in Rom weniger. Also: 300 Watt pro Person kann eine Frischluftheizung bereitstellen. Wenn z.B. 30 m<sup>2</sup> Wohnfläche je Person angenommen werden, ergeben sich 10 W/m<sup>2</sup> Wohnfläche, und das unabhängig vom Klima. Hierbei handelt es sich um eine Leistungseinheit, d.h. die Werte beziehen sich auf den Tag mit der jeweils höchsten Heizleistung (Heizlastfall). Je nach Klimazone muss ein Passivhaus also unterschiedlich gut gedämmt werden: In Stockholm mehr, in Rom weniger.
Zeile 19: Zeile 19:
  
  
-Wenn es gelingt, ein Gebäude so zu realisieren, dass die maximale Heizlast diese aus dem Zuluftverteilsystem verfügbare Leistung nicht übersteigt, dann ist es (außer für das Badezimmer) nicht mehr erforderlich, zusätzlich zum Lüftungssystem weitere Heizwärmeverteilungen und Wärmeabgabesysteme vorzusehen. Dies führt wieder zu einer gewissen Vereinfachung der Technik, so dass die gesamten Investitionskosten für die Haustechnik im Passivhaus nicht bedeutend höher liegen müssen als in einem konventionellen Gebäude; höher sind sie i.A. dennoch, da effizientere Wärmeerzeuger, Lüftungswärmerückgewinnung und Solartechnik teurer sind als konventionelle Gebäudetechnik.+Wenn es gelingt, ein Gebäude so zu realisieren, dass die maximale Heizlast diese aus dem Zuluftverteilsystem verfügbare Leistung nicht übersteigt, dann ist es (außer für das Badezimmer) nicht mehr erforderlich, zusätzlich zum Lüftungssystem weitere Heizwärmeverteilungen und Wärmeabgabesysteme vorzusehen. Dies führt wieder zu einer gewissen Vereinfachung der Technik, so dass die gesamten Investitionskosten für die Haustechnik im Passivhaus nicht bedeutend höher liegen müssen als in einem konventionellen Gebäude.
 \\ \\
  
Zeile 26: Zeile 26:
 ===== Heizlast im Voraus bestimmen ===== ===== Heizlast im Voraus bestimmen =====
  
-Ob die beschriebene funktionale Vereinfachung in einem konkreten Projekt wirklich realisiert werden kann, hängt entscheidend von den im betreffenden Fall tatsächlich auftretenden maximalen Heizleistungen (eben von der Heizlast) ab. Damit wird es für Passivhäuser heute wieder wichtig, die **Heizlasten zuverlässig im Voraus zu bestimmen**. Mit Passivhäusern sind die Bauherren wieder in einer Situation wie vor den Ölkrisen, in der zwar eine korrekte Auslegung der Heiztechnik erforderlich, der resultierende Jahresverbrauch aber so gering ist und so niedrige Aufwendungen erfordert, dass er kaum noch interessiert. Deshalb ist es wichtig, ein zuverlässiges Verfahren für die Bestimmung der Heizlast zur Verfügung zu haben. +Ob die geringe Maximalleistung in einem konkreten Projekt wirklich realisiert werden kann, hängt entscheidend von den im betreffenden Fall tatsächlich auftretenden maximalen Heizleistungen (eben von der Heizlast) ab. Damit wird es für Passivhäuser wichtig, die **Heizlasten zuverlässig im Voraus zu bestimmen**. Mit Passivhäusern sind die Bauherren in einer Situation wie vor den Energiekrisen, in der zwar eine korrekte Auslegung der Heiztechnik erforderlich, der resultierende Jahresverbrauch aber so gering ist und so niedrige Kosten erzeugt, dass er kaum noch interessiert. Deshalb ist es wichtig, ein zuverlässiges Verfahren für die Bestimmung der Heizlast zur Verfügung zu haben. 
 \\ \\
  
Zeile 38: Zeile 38:
   * Wenn möglich, sollte das Verfahren einfach handhabbar sein, und   * Wenn möglich, sollte das Verfahren einfach handhabbar sein, und
  
-  * die erforderlichen Randbedingungen für den Auslegungsfall sollten auf einfache Weise verfügbar gemacht werden können. Naheliegend wäre es daher zunächst, die vorhandenen Normen zur Ermittlung der Raumheizlast [EN 12831] einzusetzen. Es zeigte sich aber in der Praxis sehr schnell, dass das dort normierte Verfahren bei hocheffizienten Gebäuden wie dem Passivhaus zu extrem überdimensionierten Auslegungen führt. Die Ursachen dafür sind (neben im Grundsatz leicht änderbaren „Besonderheiten“, die nicht das Verfahren, aber seltsam gewählte Zusatzbedingungen betreffen, wie beispielsweise, dass U-Werte von Außenbauteilen immer mit mindestens 0.3 W/(m<sup>2</sup>K) angesetzt werden müssen):+  * die erforderlichen Randbedingungen für den Auslegungsfall sollten auf einfache Weise verfügbar gemacht werden können. Naheliegend wäre es daher zunächst, die vorhandenen Normen zur Ermittlung der Raumheizlast [EN 12831] einzusetzen. Es zeigte sich aber in der Praxis sehr schnell, dass das dort normierte Verfahren bei hocheffizienten Gebäuden wie dem Passivhaus zu extrem überdimensionierten Auslegungen führt. Die Ursachen dafür sind (neben im Grundsatz leicht änderbaren „Besonderheiten“, die nicht das Verfahren, aber seltsam gewählte Zusatzbedingungen betreffen, wie beispielsweise, dass U-Werte von Außenbauteilen immer mit mindestens 0,3 W/(m<sup>2</sup>K) angesetzt werden müssen):
  
   * Innere Wärmequellen und die gerade bei sehr tiefen Außentemperaturen bedeutenden solaren Energiebeiträge werden in der Norm nur unzureichend berücksichtigt. Gerade bei Gebäuden mit sehr geringer Heizlast spielen diese freien Wärmen jedoch auch im Auslegungsfall eine bedeutende Rolle. „Keine inneren Lasten“ gibt es nur, wenn auch keine Nutzer anwesend sind und damit auch nur geringere Anforderungen zu stellen sind. Sind Nutzer anwesend, die Komfortansprüche erheben, so gibt es regelmäßig auch innere Wärmequellen; möglicherweise in geringer Höhe, aber nicht mit dem Ansatz „Null“. Das bedingt gerade bei Gebäuden mit guter Dämmung einen entscheidenden Unterschied.   * Innere Wärmequellen und die gerade bei sehr tiefen Außentemperaturen bedeutenden solaren Energiebeiträge werden in der Norm nur unzureichend berücksichtigt. Gerade bei Gebäuden mit sehr geringer Heizlast spielen diese freien Wärmen jedoch auch im Auslegungsfall eine bedeutende Rolle. „Keine inneren Lasten“ gibt es nur, wenn auch keine Nutzer anwesend sind und damit auch nur geringere Anforderungen zu stellen sind. Sind Nutzer anwesend, die Komfortansprüche erheben, so gibt es regelmäßig auch innere Wärmequellen; möglicherweise in geringer Höhe, aber nicht mit dem Ansatz „Null“. Das bedingt gerade bei Gebäuden mit guter Dämmung einen entscheidenden Unterschied.
Zeile 50: Zeile 50:
  
  
-**Probleme bei der Berechnung der Heizlast für sehr gut wärmegedämmte Gebäude**+**Probleme bei der Berechnung der Heizlast für sehr gut wärmegedämmte Gebäude** \\
 Die Praxis zeigte, dass die in wissenschaftlich begleiteten Projekten tatsächlich gemessenen Heizleistungen in sehr gut wärmegedämmten Gebäuden eine obere Leistungsbegrenzung aufweisen, die auch bei extrem niedrigen Außentemperaturen viel niedriger liegt als die Auslegungsleistung nach der herkömmlichen Normung [DIN 4701]. Erstmals publiziert wurde dies in [Feist/Werner 1993] an Hand von gemessenen täglichen Heizwärmeverbrauchswerten im Passivhaus Darmstadt-Kranichstein. Die gemessenen tagesmittleren Heizlasten "knicken" nach diesen Ergebnissen unterhalb von Tagesmitteltemperaturen von ca. 0 °C in einen waagrechten Verlauf ab. Dieser Zusammenhang wurde in [Feist/Werner 1993] korrekt durch solare Energiebeiträge in den kälteren Wetterperioden erklärt und in [Feist 2005] ausführlicher diskutiert. Damit stand fest, dass eine Vernachlässigung der Solarbeiträge bei der Heizlastberechnung insbesondere in sehr gut wärmegedämmten Gebäuden keine korrekten Ergebnisse mehr erbringen kann.  Die Praxis zeigte, dass die in wissenschaftlich begleiteten Projekten tatsächlich gemessenen Heizleistungen in sehr gut wärmegedämmten Gebäuden eine obere Leistungsbegrenzung aufweisen, die auch bei extrem niedrigen Außentemperaturen viel niedriger liegt als die Auslegungsleistung nach der herkömmlichen Normung [DIN 4701]. Erstmals publiziert wurde dies in [Feist/Werner 1993] an Hand von gemessenen täglichen Heizwärmeverbrauchswerten im Passivhaus Darmstadt-Kranichstein. Die gemessenen tagesmittleren Heizlasten "knicken" nach diesen Ergebnissen unterhalb von Tagesmitteltemperaturen von ca. 0 °C in einen waagrechten Verlauf ab. Dieser Zusammenhang wurde in [Feist/Werner 1993] korrekt durch solare Energiebeiträge in den kälteren Wetterperioden erklärt und in [Feist 2005] ausführlicher diskutiert. Damit stand fest, dass eine Vernachlässigung der Solarbeiträge bei der Heizlastberechnung insbesondere in sehr gut wärmegedämmten Gebäuden keine korrekten Ergebnisse mehr erbringen kann. 
 \\ \\
Zeile 57: Zeile 57:
 \\ \\
  
-**Entwicklung des Berechnungsmodells**+**Entwicklung des Berechnungsmodells** \\
 Diese Aufgabenstellung wurde vom Arbeitskreis kostengünstige Passivhäuser angegangen und in Kooperation mit der Universität Stuttgart (Institut für Thermodynamik und Wärmetechnik) sowie dem Ingenieurbüro ebök gelöst. Die entscheidenden Ansätze sind in der Diplomarbeit von Carsten Bisanz mit dem instationären Modell DYNBIL untersucht worden [Bisanz 1999]. Das in dieser Kooperation entwickelte Verfahren beruht in den Grundzügen auf Energiebilanzen nach dem Schema der DIN EN 832, allerdings mit Randbedingungen, welche nicht Jahres- oder Monatsdaten, sondern die Auslegungszeiträume des betreffenden Klimas berücksichtigen. Als entscheidend hat sich herausgestellt, dass eine Auslegung mit mindestens zwei unterschiedlichen Auslegungsdatensätzen erfolgen muss, nämlich einer "kalten und strahlungsreichen Auslegungsperiode" und mit einer "mäßig kalten und strahlungsarmen Auslegungsperiode". A priori steht nämlich gerade bei Gebäuden mit sehr geringem Wärmebedarf nicht fest, ob das Maximum der Heizlast tatsächlich in den extrem kalten Perioden oder aber während eines stark bewölkten, jedoch nur mäßig kalten Zeitraumes vorliegt. Die betreffenden Auslegungsrandbedingungen müssen für jedes Klima funktional mit Hilfe von dynamischen Gebäudesimulationen an Hand von Testdatensätzen ermittelt werden. In [Bisanz 1999] ist dies für die deutschen Testreferenzjahre ausgeführt worden und es erfolgte eine erste theoretische Validierung des Verfahrens mit Hilfe von Simulationsrechnungen. Diese Aufgabenstellung wurde vom Arbeitskreis kostengünstige Passivhäuser angegangen und in Kooperation mit der Universität Stuttgart (Institut für Thermodynamik und Wärmetechnik) sowie dem Ingenieurbüro ebök gelöst. Die entscheidenden Ansätze sind in der Diplomarbeit von Carsten Bisanz mit dem instationären Modell DYNBIL untersucht worden [Bisanz 1999]. Das in dieser Kooperation entwickelte Verfahren beruht in den Grundzügen auf Energiebilanzen nach dem Schema der DIN EN 832, allerdings mit Randbedingungen, welche nicht Jahres- oder Monatsdaten, sondern die Auslegungszeiträume des betreffenden Klimas berücksichtigen. Als entscheidend hat sich herausgestellt, dass eine Auslegung mit mindestens zwei unterschiedlichen Auslegungsdatensätzen erfolgen muss, nämlich einer "kalten und strahlungsreichen Auslegungsperiode" und mit einer "mäßig kalten und strahlungsarmen Auslegungsperiode". A priori steht nämlich gerade bei Gebäuden mit sehr geringem Wärmebedarf nicht fest, ob das Maximum der Heizlast tatsächlich in den extrem kalten Perioden oder aber während eines stark bewölkten, jedoch nur mäßig kalten Zeitraumes vorliegt. Die betreffenden Auslegungsrandbedingungen müssen für jedes Klima funktional mit Hilfe von dynamischen Gebäudesimulationen an Hand von Testdatensätzen ermittelt werden. In [Bisanz 1999] ist dies für die deutschen Testreferenzjahre ausgeführt worden und es erfolgte eine erste theoretische Validierung des Verfahrens mit Hilfe von Simulationsrechnungen.
 \\ \\
Zeile 65: Zeile 65:
  
  
-====Überprüfung des Heizlast-Verfahrens: Modell/Praxis==== +==== Überprüfung des Heizlast-Verfahrens: Modell/Praxis ==== 
-\\ +
-Im Rahmen des Forschungsprojekts IEA SHC TASK 28 / ECBCS ANNEX 38 wurden Objekte mit insgesamt weit über 200 Wohneinheiten mit Passivhaus-Standard durch wissenschaftlich fundierte messtechnische Begleituntersuchungen detaillierte, zeitlich aufgelöste Daten zum Temperaturverhalten und Heizwärmeverbrauch erhoben [Feist 2005]. Diese Daten sind in unterschiedlichen Auswertestudien bereits unter verschiedenen Gesichtspunkten analysiert worden: Heizwärmeverbrauch, übrige Energieverbrauchswerte, thermische Behaglichkeitsparameter und auch mittlere und maximale Heizleistungen. Ein Teil dieser Daten stand am Passivhaus Institut (PHI) für weitergehende Analysen zur Verfügung, für einen weiteren Teil hat das Institut die Überlassung von Daten von anderen Forschungseinrichtungen erbeten; für die Zustimmung zur Verwendung in der hier vorliegenden Analyse sei den Beteiligten dabei ausdrücklich gedankt. Die zentrale Aufgabenstellung der hier vorgelegten Untersuchung ist die Überprüfung des Heizlast-Verfahrens aus [Bisanz 1999] an Hand dieser in den Feldprojekten gesammelten Messdaten und gegebenenfalls die Modifizierung des Verfahrens. +
 \\ \\
 +Im Rahmen des Forschungsprojekts IEA SHC TASK 28 / ECBCS ANNEX 38 wurden Objekte mit insgesamt weit über 200 Wohneinheiten mit Passivhaus-Standard durch wissenschaftlich fundierte messtechnische Begleituntersuchungen detaillierte, zeitlich aufgelöste Daten zum Temperaturverhalten und Heizwärmeverbrauch erhoben [Feist 2005]. Diese Daten sind in unterschiedlichen Auswertestudien bereits unter verschiedenen Gesichtspunkten analysiert worden: Heizwärmeverbrauch, übrige Energieverbrauchswerte, thermische Behaglichkeitsparameter und auch mittlere und maximale Heizleistungen. Ein Teil dieser Daten stand am Passivhaus Institut (PHI) für weitergehende Analysen zur Verfügung, für einen weiteren Teil hat das Institut die Überlassung von Daten von anderen Forschungseinrichtungen erbeten; für die Zustimmung zur Verwendung in der hier vorliegenden Analyse sei den Beteiligten dabei ausdrücklich gedankt. Die zentrale Aufgabenstellung der hier vorgelegten Untersuchung ist die Überprüfung des Heizlast-Verfahrens aus [Bisanz 1999] an Hand dieser in den Feldprojekten gesammelten Messdaten und gegebenenfalls die Modifizierung des Verfahrens.
  
- +**Feldmessergebnisse** \\
-**Feldmessergebnisse** +
-\\+
 Wie sich zeigen wird, führen die Feldmessergebnisse zu einer einheitlichen Bewertung: Wie sich zeigen wird, führen die Feldmessergebnisse zu einer einheitlichen Bewertung:
  
Zeile 84: Zeile 82:
  
   * Die zentrale Fragestellung dieser Studie betreffend: Die Berechnungsansätze nach dem in [Bisanz 1999] publizierten Verfahren haben sich in allen untersuchten Objekten sehr gut bewährt. Das Verfahren ist damit einem besonderen Härtetest unterzogen worden, denn gerade in Passivhäusern mit ihren extrem geringen Heizlasten ist die Empfindlichkeit gegenüber Einflussgrößen wie der Solarstrahlung besonders groß. Nur in solchen Gebäuden kann man daher ein solches Verfahren überhaupt mit Aussicht auf Erfolg testen, weil bei Objekten mit hohen Heizlasten Einflüsse dieser Größenordnung von anderen Effekten meist überdeckt werden.   * Die zentrale Fragestellung dieser Studie betreffend: Die Berechnungsansätze nach dem in [Bisanz 1999] publizierten Verfahren haben sich in allen untersuchten Objekten sehr gut bewährt. Das Verfahren ist damit einem besonderen Härtetest unterzogen worden, denn gerade in Passivhäusern mit ihren extrem geringen Heizlasten ist die Empfindlichkeit gegenüber Einflussgrößen wie der Solarstrahlung besonders groß. Nur in solchen Gebäuden kann man daher ein solches Verfahren überhaupt mit Aussicht auf Erfolg testen, weil bei Objekten mit hohen Heizlasten Einflüsse dieser Größenordnung von anderen Effekten meist überdeckt werden.
- 
-\\ 
  
 Die vorliegende Untersuchung ist ein Beispiel dafür, wie sorgfältig durchgeführte Feldmessungen in Verbindung mit einer wissenschaftlich fundierten Auswertung für die Praxis hilfreiche Ergebnisse liefern. Solche Ergebnisse sind statistisch gesichert und gehen über die heute oft anzutreffenden Einschätzungen „aus dem Bauch heraus“ hinaus. Die Ergebnisse können dennoch in einfach vom Praktiker zu handhabende Verfahren übertragen werden und erleichtern so deren Arbeit. Die vorliegende Untersuchung ist ein Beispiel dafür, wie sorgfältig durchgeführte Feldmessungen in Verbindung mit einer wissenschaftlich fundierten Auswertung für die Praxis hilfreiche Ergebnisse liefern. Solche Ergebnisse sind statistisch gesichert und gehen über die heute oft anzutreffenden Einschätzungen „aus dem Bauch heraus“ hinaus. Die Ergebnisse können dennoch in einfach vom Praktiker zu handhabende Verfahren übertragen werden und erleichtern so deren Arbeit.
-\\ 
- 
-See also: {{ :picopen:05_heizlast.pdf |Forschungsprojekts IEA SHC TASK 28 / ECBCS ANNEX 38}} 
- 
-See also: [[https://passiv.de/de/05_service/03_fachliteratur/030302_heizlast.htm]]|Forschungsprojekts IEA SHC TASK 28 / ECBCS ANNEX 38 
  
 +See also: [[https://passiv.de/de/05_service/03_fachliteratur/030302_heizlast.htm|Forschungsprojekts IEA SHC TASK 28 / ECBCS ANNEX 38]]
  
 +Auch neuere Arbeiten können die geringen Heizlasten in Passivhäusern empirisch bestätigen, etwa [[https://passiv.de/downloads/05_heidelberg_bahnstadt_endbericht_betriebsoptimierung.pdf|[Hasper 2021]]].
  
  
 ===== Literatur ===== ===== Literatur =====
  
 +**[Feist 2005]** [[https://passiv.de/downloads/05_heizlast.pdf|Feist, W.: Heizlast in Passivhäusern – Validierung durch Messungen.]] Endbericht. IEA SHC TASK 28 / ECBCS ANNEX 38. Passivhaus Institut, Darmstadt 2005
  
-**[Feist 2005]**  [[https://passiv.de/downloads/05_heizlast.pdf|Feist, W.: Heizlast in Passivhäusern – Validierung durch Messungen.]] Endbericht. IEA SHC TASK 28 / ECBCS ANNEX 38. Passivhaus InstitutDarmstadt 2005+**[AkkP-28]** Wärmeübergabe- und Verteilverluste im Passivhaus; Protokollband Nr. 28 des Arbeitskreises kostengünstige Passivhäuser Phase III; Passivhaus InstitutDarmstadt 2004
  
-**[AkkP-28]**  Wärmeübergabeund Verteilverluste im Passivhaus; Protokollband Nr. 28 des Arbeitskreises kostengünstige Passivhäuser Phase IIIPassivhaus InstitutDarmstadt 2004+**[DIN EN 12831]** DIN EN 12831: Heizungssysteme in Gebäuden – Verfahren zur Berechnung der Norm-Heizlast Deutsche Fassung EN 12831Beuth VerlagBerlin
  
-**[DIN EN 12831]**  DIN EN 12831: Heizungssysteme in Gebäuden – Verfahren zur Berechnung der Norm-Heizlast Deutsche Fassung EN 12831Beuth VerlagBerlin+**[AkkP-25]** Temperaturdifferenzierung in der Wohnung; Protokollband Nr. 25 des Arbeitskreises kostengünstige Passivhäuser Phase IIIPassivhaus InstitutDarmstadt 2004
  
-**[AkkP-25]** Temperaturdifferenzierung in der Wohnung; Protokollband Nr. 25 des Arbeitskreises kostengünstige Passivhäuser Phase III; Passivhaus Institut; Darmstadt 2004 +**[DIN 4701]** Deutsches Institut für Normung: DIN 4701: Regeln für die Berechnung des Wärmebedarfs von Gebäuden; Beuth Verlag; Berlin 1995
- +
-**[DIN 4701]**  Deutsches Institut für Normung: DIN 4701: Regeln für die Berechnung des Wärmebedarfs von Gebäuden; Beuth Verlag; Berlin 1995+
  
 **[Feist/Werner 1993]** Feist, W. und Werner, J.: Erste Messergebnisse aus dem Passivhaus Darmstadt Kranichstein; gi 114 (1993) Heft 5 Seite 240 ff **[Feist/Werner 1993]** Feist, W. und Werner, J.: Erste Messergebnisse aus dem Passivhaus Darmstadt Kranichstein; gi 114 (1993) Heft 5 Seite 240 ff
  
-**[Feist/Loga 1997]**  Feist, W. und Loga, T.: Vergleich von Messung und Simulation. In: Arbeitskreis kostengünstige Passivhäuser, Protokollband Nr. 5, Passivhaus Institut, Darmstadt 1997+**[Feist/Loga 1997]** Feist, W. und Loga, T.: Vergleich von Messung und Simulation. In: Arbeitskreis kostengünstige Passivhäuser, Protokollband Nr. 5, Passivhaus Institut, Darmstadt 1997 
 + 
 +**[Hasper 2021]** Hasper, W., Peper, S.: Betriebsoptimierung Bahnstadt Heidelberg, Durchgeführt im Auftrag des Amts für Umweltschutz, Gewerbeaufsicht und Energie Heidelberg 2019-2021, Passivhaus Institut, Darmstadt 2021
  
 **[Kaufmann/Feist 2001]** Kaufmann, B. und Feist, W.: Vergleich von Messung und Simulation am Beispiel eines Passivhauses in Hannover-Kronsberg. CEPHEUS-Projektinfornation Nr. 21, Passivhaus Institut, enercity, Hannover 2001 **[Kaufmann/Feist 2001]** Kaufmann, B. und Feist, W.: Vergleich von Messung und Simulation am Beispiel eines Passivhauses in Hannover-Kronsberg. CEPHEUS-Projektinfornation Nr. 21, Passivhaus Institut, enercity, Hannover 2001
  
-**[Bisanz 1999]**  Bisanz, C.: Heizlastauslegung im Niedrigenergie- und Passivhaus, 1. Auflage, Darmstadt, Januar 1999+**[Bisanz 1999]** Bisanz, C.: Heizlastauslegung im Niedrigenergie- und Passivhaus, 1. Auflage, Darmstadt, Januar 1999 
 + 
 +**[PHPP 1999]** Feist, W.; Baffia, E. und Schnieders, J.: Passivhaus Projektierungspaket 1999; Passivhaus Institut, Darmstadt, Januar 1999
  
-**[PHPP 1999]** Feist, W.; Baffia, E. und Schnieders, J.: Passivhaus Projektierungspaket 1999; Passivhaus Institut, Darmstadt, Januar 1999 
  
grundlagen/bauphysikalische_grundlagen/heizlast.1630932733.txt.gz · Zuletzt geändert: 2021/09/06 14:52 von yaling.hsiao@passiv.de